
Exponential Differences 
By L. M. Delves 

Abstract. The concept of functional differences is described, and the calculus of 
functional differences developed for the particular case of the exponential function. 

1. Introduction. The usual theory of finite difference operators on a uniform 
mesh in one dimension proceeds in general through the following steps. 

(i) Given an operator F and a function g(x), both defined on the space x, we 
require to form an approximation to Fg (x). 

(ii) We expand F in terms of the forward difference operator A 

Af(x) =f(x + h) -f(x), 
(1.1) ~~~~~~~~~~~~~~~~~00 

F = E bA7 
n=O 

(iii) We write a formal expansion for Fg: 

(1.2) Fg(x) = Ebn Ang(X). 
n=O 

(iv) We assume there exists a strongly convergent expansion of the form 

M 
(1.3) g(x) = amxm. 

m=O 

(v) We cut off the expansion (1.3) at the term m = M by assuming 
(1.3a) am 0), m > M, 

and use the annihilation property of the difference operator A with respect to the 
set of functions { x)}: 

(1.4) AqxP = O. q > p, 

to write approximately 
M 

(1.5) Fg (x) 1 E bnAng (X). 
n=O 

The accuracy of a formula such as (1.5) for given M depends on the form of 
the function g(x) through the assumption (1.3a); for a function g(x) with a rapidly 
convergent power series expansion in x over the necessary range, (1.5) may repre- 
sent a good approximation, while functions whose power series expansions con- 
verge only slowly or not at all, may give complete nonsense when substituted into 
(1.5). In this case, the power series expansion (1.3) is clearly not appropriate. 

It may well be however, that a rapidly convergent expansion in powers of some 
other parameter h exists. If we write h as a function of x: 

(1.6) h = h(x), 
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then we can use the formalism of (1.1)-(1.5) by making everywhere the change 
of variable 

(1.6a) y = h(x) 

and expanding in powers of y, with finite difference operators defined over a uniform 
mesh in y-space. This process of an analytic change of variables is seldom con- 
venient, and often introduces extraneous difficulties of its own (when, for instance, 
a different change of variables is required over different regions of space). We give 
below an alternative method of procedure which retains a uniform mesh in x-space, 
and instead adapts the finite difference procedure to expansions in functions other 
than polynomials in x, by a suitable redefinition of the operator A. The general 
method and its aims are discussed in Section 2, while a particular case of the method 
is developed in the succeeding sections, for which the function h (x) of Eq. (1.6) is 
the exponential function 

h(x) = ex. 

2. Functional Difference Operators. We define the functional difference operator 
Af with respect to the function f(x), and over a mesh of width h, by the relation 

(2.1) Afg (x) = f(x)[g(x + h) - g(x)] 

and the weighted shift operator Ef by the relation 

(2.2) Efg(x) = f(x)g(x + h). 

In Eqs. (2.1), (2.2), g(x) is an arbitrary function of x. The operators Ef, Af obey 
the operator relation 

(2.3) Af = Ef-f(x). 

Unlike the unweighted operators E, A, they do not commute, but satisfy the com- 
mutation relation 

(2.4) [Ef, Af] =EfAf- AfEf = {? Aff(f)i Ef. 

We can see the relation between the operators Ef, Af and a change in independent 
variable x by taking the limit h -* 0. In this limit we have 

(2.5) Af = hDf 

where Df is the differential operator 

D f( )d d 
Df AfX)-d= - 

dx dy' 

(2.6) Y = x), 

df(x) - 1 
dx f(x) 

Hence the operator Af has some of the properties of the unweighted operator A 
over a uniform mesh in the independent variable y defined in Eq. (2.6). The cor- 
respondence is by no means complete, however. 
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For our purposes the most important characteristic of Af is the class of functions 
annihilated by (AA)m. The relation 

(2.7) (Af ) mgn() = 0, m > n, 

defines a set of functions {gqj, n = 0, 1, 2, * . This set is essentially uniquely 
defined, apart from multiplicative constants (periodics), and for any function 
f (x) can be generated recursively from the linear difference equation 

(2.8) Afgf(X) - f(x) Ag() = Crg--( W, 

where Cn is an arbitrary periodic of period h. For instance, we have 

go(x) = CO, 

(2.9) gi(nh) = Ci E C0 

m=i f (mh)* 

For sufficiently regular f(x) the set of functions { gn is complete, and therefore for 
an arbitrary function b (x) we can write, at least formally, expansions of the types 
(1.1)-(1.5) in terms of Aft, gn rather than 'A, x8: 

00 

(a) F = Z bnAf , 
n=O 

0o 

(2.10) (b) h(x) = Earngm(x), 
m=0 

(c) ~ ~~ h(x) k, E b/f nh (x). 
n=o 

For the class of functions for which (2.10b) converges rapidly, the expansion 
(2.10c) will be preferable to (1.5). 

Difference operators of the form (2.1) have been considered by Levy 
and Lessman [1], who chose 

(2.11) f(x) = x. 

The criterion (2.6) shows that this choice is (roughly) equivalent to the scale 
change 

(2.11a) y = logx. 

However, Levy and Lessman were interested in the solution of nonlinear difference 
equations, rather than in expansions of the form (2.10). 

The exponential differences discussed in this paper have also been introduced 
by a number of authors [3], [4], [5]. In particular, the interpolation formula (6.1) 
has been given previously by Gould [5]. I am grateful to the referee for pointing 
out these references. 

3. Exponential Differences. We shall discuss in this paper the difference operator 
generated by the following choice of the function f(x) 

(3.1) f(x) = ex. 

This choice has several motivations. 
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(1) It leads to the particularly simple set of annihilation functions { gn} = { e-"J 
Hence, formulae of the type (2.10c) which we shall derive are exact for polynomials 
in e-x of degree less than or equal to M. The relationship of this result to the usual 
finite difference formulae, exact for finite polynomials in x, is apparent and very 
convenient. 

(2) The integration rules derived in Section 7 are translationally invariant; that 
is, a rule defined on a region Ox remains valid (and fits the same set of functions) 
over the translated region t t + x. This property is convenient for the generation of 
cytolic rules by the addition of simple rules over small regions; the present work in 
fact arose from a general investigation of translationally invariant integration rules. 

Let us define the finite difference operator P by the relation 

P = _eXA, 
(3.2) 

Pg(x) =- -e[g(x + h) - g(x)]. 

The operator h-'P is clearly a first order approximation to the exponential differ- 
ential operator R: 

(3.3) R = -exd/dx = d/d(ex). 

Both the operators P and R annihilate the set of functions {eGmx}. We have the 
relations: 

(3.4a) Pe'nx = (1 - zm)e-(m-l)x 

(3.4b) Re'nx = me-(M-I)X 

where 

(3.4c) z = e- 

and hence the annihilation relations 

pne-mx 0 

.5) ~~~~~~~~~~~~~n>in. (3.5) Rne-mx = 0, 

We can therefore identify the set of annihilation functions {gn}, Eq. (2.7), with 
te-nx}. 

In the following sections we derive a number of operator expansions in terms of 
P and R. 

4. Taylor Series Expansion. Using the simple relations 

(4.1a) fexRf(x) dx = - f(x) + C, 

(4.1b) fe-XuRv dx = - uv - e-xvRu dv, 

we derive in the standard manner the Taylor series expansion for a function f(x): 

N fb -a) n b + f 
(4.2) f (b) =E(e me R Rnf(a) + (-1)v+l LRl+lf (x) (e- z- eb)Nex zdx. 
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5. An Expansion for R in Terms of P. Let us assume that there exists an expan- 
sion of the form 

00 

(5.1) R = Zane-(-l)xpn. 
n=O 

Given such an expansion, we can find the coefficients an most easily with the use 
of the annihilation functions {lem}. These functions form a complete set; moreover, 
the operator R is linear, and hence the condition (3.4b) for m = 0, 1, * * 0 ?? is 
sufficient to define the coefficients an . Moreover, (3.5) implies that the set of linear 
equations obtained is triangular, and can be solved by successive substitution. The 
result is the expansion 

00 

(5.2) R = i (1 - zn)-1e-(n-1)xPn 
n=1 

where z is defined by (3.4c). Eq. (5.2) is most easily proven by operating with 
both sides on the function emX. The relation 

(5.3) Pne = (1 - z) (1 - z- 1 - zmn+l)e-(mn)x 

then yields the identity 
a) 

(5.4) (1 - z) -1 (1 - zm) (1 - Z) (1 - z ) m 
n=1 

valid for arbitrary m. The identity (5.4) can be proved simply for integer m, for 
which the series terminates, by induction on m. 

6. An Interpolation Formula. In a similar manner we can derive the interpola- 
tion formula 

a) 

(6.1) f(x + ph) = L anenxpnf(X) 
n=0 

with 
a0 = 1, 

(6.2) an (Z 1)(Z'-1 _ 1) . . . (zP-n+l 1) zn(n-1)'2 

an-(1 Z- n) ( 1 - Zn-1) . . . (1 - Z) 

Again, (6.1) is most easily proven by applying it to the function em, 
m = 0, 1 ... *o. This yields the identity 

a) 

zMP= 1 + 
n=1 

(6.3) 
(Zp- 

1) (zp- 
- 1) *. (Zp-n+l _)zn(n-l2(1 - zm) (1 Zm-1) .. . (1 m+ 

( -Zn) ( -Zn-1) ...1 Z) 

The identity (6.3) is most easily proven for integral m by induction on m, together 
with a straightforward direct proof for arbitrary p when m = 0. 

All of the Eqs. (6.1), (5.1), (4.1) may be truncated after the Nth term; they 
are then exact when operating on a polynomial in e-x of degree N or less. 
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7. Integration Formulae. In this section we derive a lumber of integration rules, 
also designed to be exact when operating on polynomials in c- 

(a) Rules derived from the interpolation formula (6.1). 
We can derive a rule for the integral It,, 

rt+ph 

(7.1) Itpf(x) = ff(x) dx 

by integrating Eq. (6.1) for the function f'(t + qh) with respect to q from 0 to p. 
In Eq. (7.1), It,p is a linear operator acting onf(x). If we cut off (6.1) after N terms, 
the resulting rule is exact for polynomials in ex of degree N; we can generate a se- 
quence of rules of successively higher degree by increasing N. These rules are con- 
nected very simply with each other. If we write a rule of degree N found in this 
way as 

N 

(7.2) It p f 1) ae 'Pf f(t), 
n=O 

then the annihilation property (3.5) implies that the coefficients an are independent 
of N. We find on integration of (6.1) the following first few values for an 

ao = ph, 

1, - zp - ph 
(7.3) a1= __Z_ 1-zPp 

-1 + 2z(ph - 1) + 2zp + 2zP+' - zp 
a2 = 2(1 - Z2)(1 - Z) 

We have left the range of integration ph free in Eq. (7.3). However, two particular 
choices of p naturally stand out. 

(i) An integration rule of degree N of the form (7.2) contains the term PNf(t), 

and hence refers to the function f evaluated at mesh points x = t, t + h, * * * , t + Nh. 
It is often convenient to refer only to points inside the range of integration, including 
the ends; we therefore take the particular choice p = N and obtain the following 
rules from (7.3). 

Rule A, Degree 1, p = N = 1: 
rt+h F (-z-~ 

(7.4) ] f(x) dx [h + (1 -z -h) etPf M. 

Rule B, Degree 2, p = N = 2: 

ft+2hf [ h 1 Z2 2h eP 
| f(x) dx [2h + 1 e tP 

(7.5) 
+-1 + 2z(2h -1) + 2z2(1 + z) - 4 

e2tp24 ft\ + ~~~2(1 - Z2) (1 - Z) e ~ / 

Rule A is exact for the functions 1, e-X, while rule B fits also e-2. They are the 
analogues for the exponential functions of the usual trapezoidal rules and Simpson's 
rules respectively. 

(ii) The choice of annihilation functions emX to be fitted suggests the construc- 
tion of rules valid over an infinite domain p -* *o. Such rules are useful in their own 
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right for integrating exponentially decreasing functions over an infinite region, when 
the usual expansion in powers of x of course runs into difficulties. The integration 
rule defined by (7.2), (7.3) is not useful for this purpose, since each of the terms 
diverges in this limit. This is a consequence of fitting the function 1. 

(b) Modified rules. The results (7.3) are identical with the weights defined by 
insisting directly that the rule (7.2) fit the functions 1, e-X, e-2, * . . . We can obtain 
modified rules by not fitting the function 1. The simplest of these is obtained by 
setting ao = 0 and writing 

t+ph N 

(7.6) It' f(x) j f(x) dx E bePft) 
1n=1 

The coefficients bn in (7.6) are again independent of N, and the first two are 

1 -za 
-z 

(7.7) 
b- (1 - zP)(z" - 2z - 1) k2 = ~ 2(1 - z)(1 - z2) 

The coefficients (7.7) do not diverge as p -* o; however, rule (7.6) is clearly not 
the most efficient possible. It is designed to fit the functions emx, m = 1, 2, 3, ... ; 
but the degree 1 rule, involving two points, fits only one function e-X, while the 
degree 2 rule obtained from (7.7) involves the evaluation of f(x) at three points 
and fits only two functions. 

A better procedure is therefore to write 
t+p 1N 

(7.8) Itf(x) f(x) dX = N Z 
n=O 

where the coefficients CnN now depend explicitly on the degree N, and are defined 
by the requirement that the rule of degree N fit the functions e-X, e2X . . e-(N+1)z 

We find in this way the following rules. 
Rule C, N = 1, fits e-, e-2X 

=(zP - 1)(zP - 2z - 1) 
2z 

(7.9) = (zP - 1)2 

1, I=2z(1 -z) 

Rule D,N = 2, fits e-x, e(2X, e-3X 

CO, (I = zP )6z - (1 - ZP)(1 - 3z - 3Z2 + 2zp)}, 

(7.10) C1, (- ) (1 - 3z - 3Z2 + 2zp), 
6Z3 (1 - Z) 

=2(1 
_ zp)2(-1 + 3z 2zp) 

C2,2 = 6Z2(1 - z)(1 - Z2) 

From these rules we obtain two rules of degree 1 and 2, analogous to (7.4) and 
(7.5). 
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Rule C', p = 1, N = 1: 

(7.11) ft+h () dx [1 _2 +Z 1 tP]f(t). 2z + z 

Rule D', p = 2, N = 2: 

jt+2hf (x) dx = [ 63 {6z - (1 - z2)(1 - 3z _ 
Z2)} 

(7.12) ( )( 2 )( 
(7 +(1 + z)(1-z)(1 - 3z-z2) t _ (1 -z2)(1 -2z) -2tp21 + eePi t) 

6z' 6zj 

We also obtain two rules over the domain t to so, valid for h > 0. 
Rule C", N = 1: 

(7.13) f f(x) dx = (1 2+ 2z(1- ) e P)f(t). 

Rule D", N = 2: 

;f(x) dx [-1 + 3z + 3Z + 62 + 
-3z _ 3Z2) _tp ff~~x~dx -1+3Z+3z263+16z' (1 - z) P 

(7.14) (-I + 3z) -2tP2l(t). 

6Z2(j - Z) (I - Z2) ej 

Rules C', C" and D', D" fit the same functions as rules C, D respectively. 

8. Numerical Examples. We conclude by giving some simple numerical ex- 
amples of the use of the various rules derived above, and compare them with the 
corresponding conventional forward difference rules. We shall use the expansions 
on a number of simple test functions, which we define as follows 

f1(X) = X + x2 + x3, 

f2(x) = e-X + e-2x + e-3X 

f3(x) = X + X2 + X3 + X4 

f4(x) = e-X + e-2x + e-3X + e-4X 

(8.1) f5(x) = sinx2, 

f6(x) = xe-x 

f7(x) = xe-x, 

f8(X) = x2e-x 

f9(X) = 17(1 + x) 

fio(x) = 17(1 + x). 

The functions fi and f2 are annihilated by A4 and P4 respectively, and hence are 
fitted exactly with some of the rules tested below. The functions f3 and f4 test the 
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TABLE I 
Interpolation 

h = 0.1 x = 0.55 
This table gives the results of retaining three and four terms in the interpola- 

tion formulae 6.1 and 9.2, for the functions (9.1). Column 2 gives the exact func- 
tional values, while columns 3 to 6 give the errors 6 = fappro (x) - f(x) for the dif- 
ferent approximations. 

Fu. No. f(x) exact p2 p3 A2 A3 

1 1.0188750 - 0.021883 +0 .035311 - 0.02375 0 
2 1.1018708 +0 .04669 0 +0 .034822 +0 .04681 
3 1.1103813 -0 . 0237175 +0. 0212993 -0 . 0212563 +0 . 04937 
4 1.2126740 +0 .032160 +0.0585 +0 .038653 +0 .031497 
5 0.5226872 +0.04541 -0. 04260 +0.04520 +0.0523 
6 0.4064327 +0. 032828 +0. 04107 -0.04580 +0.04505 
7 0.3173224 +0 .04360 -0.0547 -0. 04839 -0.0570 
8 0.1745273 +0.04423 -0.04106 +0. 04982 +0.04154 
9 0.6451613 +0.04155 - 0.068 +0.0 4593 +0.0582 

10 0.7677543 -0.031034 +0.0599 -0.031763 -0. 04378 

TABLE 2 

Differentiation 
h = 0.1 x = 0 

This table gives the results of retaining three and four terms in the differentia- 
tion formulae (5.2) and (9.3) for the functions (9.1). Column 2 gives the exact 
derivative f'(0), while columns 3 to 6 give the errors 6 = f'approx.(0) - f'(0) 
for the different approximations. 

Fu. No. f' (x) p2 p3 'A2 A3 

1 1.0 -0.0564945 +0.221590 -0.02 0 
2 -6.0 -0.0172501 0 -0.0984157 -0.0176536 
3 1.0 -0.0640372 +0.0353901 -0.026 +0.006 
4 -10.0 -0.0814818 -0.0244709 -0.2581718 -0.0579679 
5 1.0 - 0.0227582 -0.033684 +0 .0233217 +0 .04299 
6 1.0 +0.0186146 -0.0284117 +0.0193102 +0 .0217124 
7 1.0 +0.0233311 -0.035304 -0. 0290559 -0.038618 
8 0.0 +0.034996 -0.036589 +0.0172213 +0.0224582 
9 - 1 .0 +0 .0250653 +0.035013 +0.0151515 +0.0234965 

10 0.0 +0.0154661 +0 .0239245 - 0.0257121 +0.0246640 

degree to which one extra term affects the accuracy of the result; while the func- 
tionsf5 to f1o were chosen merely as examples of a variety of well-behaved functions. 

A. Interpolation. The comparable forward difference interpolation formula to 
(6.1 ) is given by 

00 

f(x + ph) = E b.AYf(x) n=o 
(8.2) bo= 1, 

b_ = p(p-) (p-n + 1) 
n! 
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TABLE 3 
Integration 

Integration between zero and two, h = 0.1 
This table compares the two exponential-Simpson integration rules 7.5 and 

7.12 with the usual Simpson's rule. Column 2 gives the exact result, while columns 
3 to 5 give the error B f(x) dx (approx.) -_ J f(x) dx, for these different rules. 

Fu. No. f2 f(x) dx exact Eq. 7.5 Eq. 7.12 Simpson 

1 8.6666667 -0.031089 -0.038662 0 
2 1.6880140 +0.0566 0 +0.04196 
3 15.066667 -0.03260 - 0.021951 +0 .0426 
4 1.9379301 +0 .04294 +0.0582 +0. 04545 
5 1.4161468 +0.0533 -0.04382 +0 .068 
6 0.4908422 +0.0573 +0.0577 +0.0530 
7 0.5939942 +0.0519 -0.0568 -0.0516 
8 0.6466472 +0.0517 -0.04276 +0.0534 
9 1.0986123 +0.0520 -0.0589 +0.0532 

10 1.1071487 +0.0532 +0.0567 -0.061 

TABLE 4 
Integration over an infinite range 

This table gives the results of using Eq. (7.14) to estimate the integral ff(x) dx, 
for various lower limits a and step length h. Columns 3, 4 and 6 give the deviations 
of this rule from the exact values. 

Fu. No. f f(x) dx Eq. (?7.14), Eq (714), f - f(x) d| Eq. (7.14), 
U 

? 
2 

z h = 0.1 h = 0.5 3 x h = 0.1 

2 0.1453193 0 0 0.0510675 0 
4 0.1454032 +0 .04558 +0 .04136 0.0510691 +0.0510 
6 0.0091578 -0.0247620 +0.034901 0.04617 +0.03247 
7 0.4060058 -0.0406499 -0.0252380 0.1991483 -0.0149543 
8 1.3533528 -0.3742488 -0.2553019 0.8463802 -0.1675871 

10 0.4636476 -0.2230943 -0.2036500 0.3217505 -0.1864093 

Table 1 gives the accuracy attained by retaining second and third order differences 
in Eqs. (8.2) and (6.1), for the functions - fio . 

B. Differentiation. The comparable forward difference formula to (5.2) is 
given by 

(8.3) D = Z (-1)n+l 
n=1 nh 

Table 2 gives a comparison of (8.3) and (5.2). 
C. Integration. The integration rules of Section 7 share one useful property with 

the usual rules fitted to polynomials in x: they are translationally-invariant, that is, 
the relative weights an assigned to the points in basic cell are independent of the 
origin of the cell. It is therefore a simple matter to generate cytolic rules over a large 
region by piecing together rules for smaller regions. 

Table 3 compares such cytolic rules generated from the three point formulae 
(7.5) and (7.12), with the usual cytolic Simpson's rule, for the region 0 < x ? 2. 
In this table, as in Tables 1 and 2, the step length is taken to be h = 0.1. 
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Finally, Table 4 gives an example of integration over an infinite domain using 
Eq. (7.14). 

9. Discussion. These illustrative examples show clearly the expected result: 
expansions in P are better than expansions in A for some functions, and worse for 
others. The necessary exponential differences are more time-consuming to form 
than the usual difference tables; but the gain in their use is, for suitable functions, 
so marked as to more than compensate for this. This is especially so if, as may well 
occur in practice, the calculation of the functions themselves takes much longer 
than the differencing. 

The results of Tables 3 and 4 are especially interesting. We see that, except in 
the special case of function 2, the rule (7.5) is better than (7.12). We recall that, 
although both rules contain terms up to P2, Eq. (7.5) fits the function 1, e-Ge-2, 
while (7.12) fits the function e-3X but not the function 1. For a cytolic numerical 
integration scheme, in which the whole region of integration is divided into unit 
cells which are integrated over separately, it is clearly usually (but again not always) 
advantageous to fit the constant function. 

The major justification of (7.12) is that it leads to the rule (7.14) for integration 
over an infinite region. Table 4 shows clearly the use of the rule in estimating the 
tail of an integral. It also shows, as should be expected, that it does not pay to make 
h small in this estimation. 

We have discussed in this paper only forward differences, but backward and 
central differences formulae can be given in a similar manner; and the simple results 
given here can be extended in a number of directions in a straightforward manner. 
Some of these extensions will be dealt with in later papers. 
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